Assessing the Performance of Different Estimators that Deal with Measurement Error in Linear Models*
نویسندگان
چکیده
We describe different procedures to deal with measurement error in linear models, and assess their performance in finite samples using Monte Carlo simulations, and data on corporate investment. We consider the standard instrumental variables approach proposed by Griliches and Hausman (1986) as extended by Biorn (2000) [OLS-IV], the Arellano and Bond (1991) instrumental variable estimator, and the higher-order moment estimator proposed by Erickson and Whited (2000, 2002). Our analysis focuses on characterizing the conditions under which each of these estimators produces unbiased and efficient estimates in a standard “errors in variables” setting. In the presence of fixed effects, under heteroscedasticity, or in the absence of a very high degree of skewness in the data, the EW estimator is inefficient and returns biased estimates for mismeasured and perfectly-measured regressors. In contrast to the EW estimator, IV-type estimators (OLS-IV and AB-GMM) easily handle individual effects, heteroscedastic errors, and different degrees of data skewness. The IV approach, however, requires assumptions about the autocorrelation structure of the mismeasured regressor and the measurement error. We illustrate the application of the different estimators using empirical investment models. Our results show that the EW estimator produces inconsistent results when applied to real-world investment data, while the IV estimators tend to return results that are consistent with theoretical priors. JEL Classification Numbers: G31, C23.
منابع مشابه
Ridge Stochastic Restricted Estimators in Semiparametric Linear Measurement Error Models
In this article we consider the stochastic restricted ridge estimation in semipara-metric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates are established. Also, necessary and sufficient condition...
متن کاملStochastic Restricted Two-Parameter Estimator in Linear Mixed Measurement Error Models
In this study, the stochastic restricted and unrestricted two-parameter estimators of fixed and random effects are investigated in the linear mixed measurement error models. For this purpose, the asymptotic properties and then the comparisons under the criterion of mean squared error matrix (MSEM) are derived. Furthermore, the proposed methods are used for estimating the biasing parameters. Fin...
متن کاملTESTING FOR AUTOCORRELATION IN UNEQUALLY REPLICATED FUNCTIONAL MEASUREMENT ERROR MODELS
In the ordinary linear models, regressing the residuals against lagged values has been suggested as an approach to test the hypothesis of zero autocorrelation among residuals. In this paper we extend these results to the both equally and unequally replicated functionally measurement error models. We consider the equally and unequally replicated cases separately, because in the first case the re...
متن کاملDetection of Outliers and Influential Observations in Linear Ridge Measurement Error Models with Stochastic Linear Restrictions
The aim of this paper is to propose some diagnostic methods in linear ridge measurement error models with stochastic linear restrictions using the corrected likelihood. Based on the bias-corrected estimation of model parameters, diagnostic measures are developed to identify outlying and influential observations. In addition, we derive the corrected score test statistic for outliers detection ba...
متن کاملDifferenced-Based Double Shrinking in Partial Linear Models
Partial linear model is very flexible when the relation between the covariates and responses, either parametric and nonparametric. However, estimation of the regression coefficients is challenging since one must also estimate the nonparametric component simultaneously. As a remedy, the differencing approach, to eliminate the nonparametric component and estimate the regression coefficients, can ...
متن کامل